Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo.
نویسندگان
چکیده
In Escherichia coli the RecA protein plays a pivotal role in homologous recombination, DNA repair, and SOS repair and mutagenesis. A gene designated recX (or oraA) is present directly downstream of recA in E. coli; however, the function of RecX is unknown. In this work we demonstrated interaction of RecX and RecA in a yeast two-hybrid assay. In vitro, substoichiometric amounts of RecX strongly inhibited both RecA-mediated DNA strand exchange and RecA ATPase activity. In vivo, we showed that recX is under control of the LexA repressor and is up-regulated in response to DNA damage. A loss-of-function mutation in recX resulted in decreased resistance to UV irradiation; however, overexpression of RecX in trans resulted in a greater decrease in UV resistance. Overexpression of RecX inhibited induction of two din (damage-inducible) genes and cleavage of the UmuD and LexA repressor proteins; however, recX inactivation had no effect on any of these processes. Cells overexpressing RecX showed decreased levels of P1 transduction, whereas recX mutation had no effect on P1 transduction frequency. Our combined in vitro and in vivo data indicate that RecX can inhibit both RecA recombinase and coprotease activities.
منابع مشابه
Less is more: Neisseria gonorrhoeae RecX protein stimulates recombination by inhibiting RecA.
Escherichia coli RecX (RecX(Ec)) is a negative regulator of RecA activities both in the bacterial cell and in vitro. In contrast, the Neisseria gonorrhoeae RecX protein (RecX(Ng)) enhances all RecA-related processes in N. gonorrhoeae. Surprisingly, the RecX(Ng) protein is not a RecA protein activator in vitro. Instead, RecX(Ng) is a much more potent inhibitor of all RecA(Ng) and RecA(Ec) activi...
متن کاملDNA Metabolism in Balance: Rapid Loss of a RecA-Based Hyperrec Phenotype.
The RecA recombinase of Escherichia coli has not evolved to optimally promote DNA pairing and strand exchange, the key processes of recombinational DNA repair. Instead, the recombinase function of RecA protein represents an evolutionary compromise between necessary levels of recombinational DNA repair and the potentially deleterious consequences of RecA functionality. A RecA variant, RecA D112R...
متن کاملInhibition of RecA protein by the Escherichia coli RecX protein: modulation by the RecA C terminus and filament functional state.
The RecX protein is a potent inhibitor of RecA activities. We identified several factors that affect RecX-RecA interaction. The interaction is enhanced by the RecA C terminus and by significant concentrations of free Mg(2+) ion. The interaction is also enhanced by an N-terminal His(6) tag on the RecX protein. We conclude that RecX protein interacts most effectively with a RecA functional state ...
متن کاملProbing the DNA sequence specificity of Escherichia coli RECA protein
Escherichia coli RecA protein catalyzes the central DNA strand-exchange step of homologous recombination, which is essential for the repair of double-stranded DNA breaks. In this reaction, RecA first polymerizes on single-stranded DNA (ssDNA) to form a right-handed helical filament with one monomer per 3 nt of ssDNA. RecA generally binds to any sequence of ssDNA but has a preference for GT-rich...
متن کاملSSB antagonizes RecX-RecA interaction.
The RecX protein of Escherichia coli inhibits the extension of RecA protein filaments on DNA, presumably by binding to and blocking the growing filament end. The direct binding of RecX protein to single-stranded DNA is weak, and previous reports suggested that direct binding to DNA did not explain the effects of RecX. We now demonstrate that elevated concentrations of SSB greatly moderate the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 4 شماره
صفحات -
تاریخ انتشار 2003